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Two basic assumptions are usually made by crystallographers in the evaluation of X-ray or neutron 
structure factors. The first is the validity of the harmonic approximation in deriving the Debye-Waller 
factors which account for the effect of lattice vibrations in reducing the intensities of the Bragg reflex- 
ions. The second assumption is that the contribution to the measured intensity of thermal diffuse scat- 
tering (TDS), which rises to a peak at the reciprocal lattice point, can be ignored. Anharmonicity and 
TDS can each give rise to appreciable intensity effects, and so must be allowed for in accurate work. 
Anharmonicity can be taken into account by treating the crystal as a system of independent anharmonic 
oscillators, with each atom vibrating in a potential field whose symmetry conforms with the site sym- 
metry of the atom. The effect of TDS can be calculated approximately using first-order (one-phonon) 
harmonic scattering theory, together with a knowledge of the elastic constants of the crystal. Calcula- 
tions of both types of correction are considered in detail for a cubic crystal, and are applied to the 
analysis of X-ray diffraction measurements on KCI and of neutron measurements on BaF2. 

A. INTRODUCTION 
1. General 

In this article we shall discuss certain limitations in the 
conventional procedure of determining structure fac- 
tors from the experimental measurement of Bragg in- 
tensities. The limitations are of two kinds, and both 
are concerned with the influence of lattice vibrations 
on the interpretation of the intensity measurements. 
The first relates to the use of the harmonic approxima- 
tion in evaluating, by means of the Debye-Waller 
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l BRAGG PEAK 

Fig. 1. Intensity scattered in the region of  the Bragg peak. The 
total intensity from both Bragg scattering and thermal dif- 
fuse scattering is represented by the area above the straight 
line AB. The cross-hatched region denotes the intensity 
from thermal diffuse scattering alone (after Cooper, 1969). 

theory*, the 'temperature factors' of the individual 
atoms in the unit cell. A crystal with harmonic inter- 
atomic forces would have no thermal expansion and 
many other properties not possessed by real crystals; 
it is not surprising, therefore, that the Debye-Waller 
theory fails to account completely for the effect of 
thermal motion in reducing the intensities of the Bragg 
reflexions. Lonsdale (1962) has commented that the 
Debye-Waller theory has ' . . .  never been extended 
quantitatively. . ,  to temperatures near the melting 
point, where anharmonic vibrations become increas- 
ingly important.' Anharmonic effects are even present 
at 0°K, but we shall be concerned mainly with room 
temperature or above, as most of the available experi- 
mental measurements lie in this range. The second kind 
of limitation concerns the thermal diffuse scattering 
(TDS) which is distributed throughout reciprocal space 
and rises to a peak at the reciprocal lattice points (see 
Fig. 1). It is normally assumed that the integrated 
Bragg intensity, associated with the elastic scattering 
process only, is given by the area lying above the 
straight line AB joining the background on either side 
of the Bragg peak; this procedure ignores the inelastic 
contribution from TDS, which is represented by the 
cross-hatched region in Fig. 1 and can constitute an 
appreciable fraction of the total area. 

* The extension of the Debye-Wal ler  theory to the scat- 
tering of  neutrons  is due to Weinstock, Waller and others:  
the expression 'Debye-Wal ler  theory '  will be employed in 
discussing both  X-rays and neutrons.  We shall use 'Debye-  
Waller factor' to denote the reduction in intensity of an X-ray 
or neutron reflexion caused by thermal vibration, and 'tem- 
perature factor' as the corresponding quantity multiplying the 
atomic scattering factor (X-rays) or the nuclear scattering 
length (neutrons). 
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The Debye-Waller (harmonic) theory forms the 
starting point of our discussion. The theory, as applied 
to X-ray scattering (James, 1962; Cochran, 1963; 
Slater, 1967) and to neutron scattering (Cochran, 1963; 
Egelstaff, 1965), is fully described elsewhere. In the next 
section, we shall quote results from this theory, without 
proof; these results will be used later in discussing our 
two main issues, anharmonicity and TDS. 

In Part B anharmonic effects are considered. § 3 
describes the formal problem of extending the Debye- 
Waller theory to include cubic-anharmonic and quartic- 
anharmonic terms in the potential energy of the crystal: 
the solution of this problem is extremely difficult, and 
has been attempted only for crystals with the rocksalt 
structure and for certain monatomic cubic crystals. 
This difficulty arises because the displacement of a 
given atom is governed by the displacements of all the 
remaining atoms. A simpler theoretical approach, 
which gives essentially the same expressions for the 
temperature factors of these simple structures as the 
coupled-oscillator treatment, assumes that the atomic 
displacements are independent of one another. The 
temperature factors for such an Einstein solid are 
derived in § 4 for atoms occupying sites with different 
types of cubic point symmetry. In § 5, the structure 
factors are calculated for a few standard cubic struc- 
tures, using the results of the previous section in com- 
bination with the generalized structure-factor for- 
malism proposed by Dawson (1967a). The very limited 
experimental data on anharmonicity is discussed in 
§ 6, where it is shown that the Einstein theory provides 
a satisfactory interpretation of the observed X-ray in- 
tensities from KCI and neutron intensities from BaF2. 

The effect of thermal diffuse scattering on the meas- 
ured intensities is treated in Part C. § 7 deals with the 
theory of first-order (one-phonon) TDS contributions 
to the peak observed with X-rays, and § 8 with the 
corresponding theory for neutrons. Unlike the zero- 
order intensity, the TDS peak depends on correla- 
tion between the motion of different atoms, and so 
it is essential to adopt a coupled-oscillator model of 
the crystal. However, the theory of TDS based on the 
harmonic approximation, using the relevant cross- 
section formulae quoted in Part A, will be adequate 
for our purpose. In § 9, the theory is applied to the 
correction of intensities recorded on KCI (X-rays) and 
BaF2 (neutrons). 

2. Scattering formulae based on the 
harmonic approximation 

2.1. L is t  o f  symbols  

The influence of lattice vibrations on the scattering 
of X-rays by single crystals has been treated by many 
authors, some of them using their own particular brand 
of notation. We shall adopt the notation of Cochran 
(1963), which converts readily from X-ray scattering 
to neutron scattering: a list of the symbols is given in 
Table 1. Note that the unit cells of the direct lattice, 

defined by al,a2,a3, and of the reciprocal lattice, de- 
fined by bl,b2,b3, are related by 

a i .  b~ = 2n (2.1) 
( i=1,2 ,3) .  

The volume of the reciprocal unit cell is 

vz = 8~3/v , 

where v is the volume of the direct unit cell; the radius 
of the Ewald sphere is 2~z/2. The advantage of using 
(2.1), which differs from the usual definition of the 
reciprocal lattice used in crystallography, is that many 
of the formulae given later are simplified by the omis- 
sion of 2n. Our reciprocal lattice vector B is related 
to the reciprocal lattice vector s used by other authors 
(e.g. Cruickshank, 1956) by 

B = 2~zs. 

For Bragg scattering, the scattering vector Q is equiv- 
alent to B so that Q and B are interchangeable in 
the formulae for the Debye-Waller factor quoted in 
Parts A and B. 
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Table 1. Definition o f  symbols  

Miller indices 
mass of the xth atom in (direct)unit cell 
number of atoms in unit cell 
mass of unit cell [m = X m,d 

s¢ 
label identifying lth unit cell 
number of unit cells in crystal 
mass of neutron 
wavelength of X-rays or neutrons 
wave vector of incident X-rays or neutrons [k0 = 2rr/2] 
wave vector of scattered X-rays or neutrons [k = 2zr/2 
for X-ray scattering] 
scattering angle, or angle between k0 and k 
Bragg angle 
scattering vector ( -  k - k0) [Q = 4re sin 0/2] 
reciprocal lattice vector, or diffraction vector [B= 
4zr sin 0B/2] 
X-ray atomic scattering factor of ~:th atom (at rest) 
coherent nuclear scattering length of Kth atom 
unit cell vectors 
reciprocal cell vectors [ai. 10s = 2zr&j] 
volume of unit cell 
volume of reciprocal cell 
wave vector of elastic wave. For each q, there are 3n 
normal modes of vibration 
polarization vector of mode (j,q) [1 <_j<_3n] 
circular frequency of mode (j,q) 
energy of mode (j,q) 
angle between Q and polarization direction of mode 
U,q) 
radius vector from a fixed origin in the crystal to 
equilibrium position of xth atom in lth cell 
displacement of atom (l, ~:) from its equilibrium position 
cartesian components of u 
exponent of Debye-Waller factor, exp [ -2  W(Q)] 
exponent of temperature factor, exp [-W,,(Q)], of 
xth atom 
temperature factor of rth atom [T,,(Q)=e-W,,tO)] 
Boltzmann's constant 
temperature in °K 
Planck's constant divided by 2re 
Grfineisen constant 
volume expansion coefficient 
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2.2. X-ray scattering 
From the kinematic theory of diffraction, the am- 

plitude of scattering of X-rays from a crystal is pro- 
portional to 

Y(Q)= Xf,¢ exp [iQ. (r(lK)+u(lx))] 
Ix 

where the summation is over the n atoms of the unit 
cell (1 < x < n )  and over the N cells of the crystal 
(1 < / < N ) .  

The differential scattering cross-section, da/df2, giv- 
ing the intensity of scattering into unit solid angle for 
unit incident intensity, is YY*: 

da 
- X X f, cf,¢, exp [iQ. (r(/x) 

dO l~ l'~' 
-r( / 'x '))]  (exp [iQ. (u(lx)-u(l 'x '))]) .  (2.2) 

The displacements u(/K) are time-dependent, and the 
angle brackets ( )  indicate the average value over a 
period of time which is long compared with the period 
of vibration of an individual atom. 

The various scattering processes contributing to 
de 

can be subdivided into the elastic (zero-order) 
dO 
process and inelastic processes, involving exchange of 
energy with the quanta of lattice vibrational energy, 
or phonons, of the crystal. Thus 

( ) ( ) da da da + --d~- + (2.3) 
dO - dO- 0 + -d~- , 2 "'" 

where the successive terms on the right-hand side re- 
present the cross-sections for zero-order (zero-phonon), 
first order (one-phonon), second order (two-phonon).. 
scattering. 

To develop the expressions (2-2) and (2.3) further 
we expand the potential energy V of the crystal as a 
Taylor power series in the cartesian components 
uzl(/K), ux2(/K), uxa(lK) of the thermal displacements 
u(lK) of all the atoms: 

v=v0+ Zu q )[ ev ] 

u , , [ ] 
+ ,l~X ~'r~'Z ux(hc) x,(l tc ) ax(lx)ax'(l'x') o 

+ higher-order terms . . .  (2.4) 

The zero subscripts in (2.4) mean that the derivatives 
are evaluated at the equilibrium positions r(lK) of the 
atoms, so that the linear term 

z igx xlx 0 

vanishes. In the 'harmonic approximation', all the 
higher-order terms after the quadratic term in (2.4) are 
ignored. 

Using this approximation, the cross-section for 
Bragg scattering reduces to 

da ) = Nvz X IF(B)I2O(Q-B), (2.5) 
- d ~ 0  B 

where 

F(Q)= X f~(Q) exp [ -  W~(Q)I exp [iQ. r(x)]. (2.6) 
~c=l 

The delta function d(Q-13) represents the condition 
that scattering cannot take place unless Q=B,  or 
2 sin 0/2 = l/d: it is defined by the equations 

6 ( Q - B ) = 0  for Q # B ]  

I 6 ( Q -  B)dvz= 1 

where the integration is over the Brillouin zone asso- 
ciated with B. Equation (2.6) is the structure-factor 
expression for elastic scattering, r(x) is the radius vector 
from the origin of the unit cell to the equilibrium 
position of the tcth atom, and exp [-W~(Q)] is the 
temperature factor accounting for the influence of the 
thermal motion of the xth atom. 

The exponent of the temperature factor is given by: 

W~= ½([Q. n(lx)]2}~ (2.7) 
=½az<uZ>Q , J 

where <uZ>Q is the mean square amplitude of vibration 
along Q. <uZ)Q can be expressed as a symmetrical 
tensor; with a maximum number of six independent 
components. For a cubic crystal with atoms occupying 
sites of cubic symmetry, there is only one independent 
component a s  <U2)Q is isotropic. In this case, W~ can 
be written 

WK = B,¢ sin20/22 (2.8a) 

where the isotropic B factor of the xth atom is 

B,¢= 8n2([u(/x)]2). (2.8b) 

The contribution of an individual mode of vibration 
(jq) of a cubic crystal to the mean square displacement 
([u(hc)] z) in any direction is proportional to 

Ej(q) (2.9) 
c 4 ( q  ) • 

At high temperatures, in the region of equipartition,. 
the mode energy Ej(q)=kBT. Thus, provided the fre- 
quencies c0j(q) are temperature-independent, W~ is 
proportional to the absolute temperature. 

The scattering theory based on the harmonic ap- 
proximation leads, therefore, to the important results: 

(i) W~ contains terms which are quadratic in Q (equa- 
tion 2.7), but does not contain any higher-order 
terms ; 

(ii) W~ is proportional to T at high temperatures. 

A C 25A - 1" 
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In the modification of the harmonic theory which 
allows for the influence of lattice expansion on the 
frequencies coj(q) ('quasi-harmonic theory': see section 
4-3), W,~ is quadratic in Q but contains terms in both 
T and T z. We shall see in Part B that anharmonicity 
leads to a more complex dependence of W~ on both 
Q and T. 

The cross-section for first-order scattering, (da/dQ) 
in equation (2.3), involves the 3nNmodes of vibration. 
The cross-section for the 3n modes with the same wave 
vector q is" 

_ 3 .  E j ( q )  
/ da(q) ~ NQZ 2; IGj(Q)I 2 (2.10) 
\ dt2 / x m j = l ~  

where Q and q are related by the condition 

Q + q = B  

and Gj(Q) is the so-called 'structure factor for first- 
order scattering'. We shall apply formula (2.10) in 
Part C to the scattering from acoustic modes of small 
wave vector: for these elastic waves, we can write 

Gj(Q) = F(Q) cos aj(q), 

so that (2-10) becomes 

dQ / 1 m :=~ ~ IF(Q)]2cos2c~:(q) (2.10a) 

where the summation is restricted to the three acoustic 
modes of wave vector q. 

We do not need the formulae for second-order or 

higher-order scattering [i.e. da (--d-Q-) 2 '  (d-ff~-) 3 in equa" 

t ion(2.3)/ ,  but in Fig.2 we illustrate the geometrical 
J 

conditions governing the zero-order, first-order, second- 
order scattering processes. These diagrams are helpful 
in visualizing the nature of the various scattering pro- 
cesses. 

2.3. Neutron scattering 
For an element containing a mixture of different 

isotopes, or for a single isotope with non-zero nuclear 
spin, the scattering length for slow neutrons varies 
from one atom to another, and the total scattering is 
partly coherent and partly incoherent. The coherent 
scattering gives rise to interference effects, and is com- 
puted by replacing the scattering length of each atom 
by the average scattering length of the corresponding 
element. The incoherent scattering merely increases the 
background scattering level in a diffraction experiment, 
and will not concern us further. 

The expression giving the differential scattering 
cross-section for the coherent elastic scattering of neu- 
trons is the same as for X-rays, equations (2.5) and 

(2.6), with b~ replacing f~. Thus the structure factor 
for the Bragg scattering of neutrons is 

F (Q)=  2; bxexp [ -  W,:(Q)] exp [ iQ.  r(tc)]. (2-11) 
/t7 

Note that b~ is independent of Q and is usually inde- 
pendent of the wavelength of the neutrons too" this 
is in contrast with the X-ray scattering factorf,~, which 
varies with 0 (form-factor dependence) and 2 (anom- 
alous dispersion). 

• • • • EWALD SPHERE 

• • 2rT 
~ . ~ /  k = ko = --~- 

C 

• • • ko - f rO 

(a) 

C 
• • ~ r O  

ko / 

EWALD SPHERE 

k=ko 

(b) 

~ EWALD SPHERE 

q2 k~ ko 
• P 

.c 
q2" 

(C) 

Fig. 2. Reciprocal lattice diagrams representing: (a) zero-order 
(Bragg) scattering of X-rays, (b) first-order scattering of 
X-rays, (c) second-order scattering of X-rays. O is the 
origin of reciprocal space, P is the reciprocal lattice point, 

C is the centre of the Ewald sphere, and CS (= k) in (b) and 
(c) is the wave vector of the scattered X-rays. The two 

wave vectors ql and q2 in (c) add vectorially to equal SP. 
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The inelastic coherent first-order scattering is gov- 
erned by the momentum conservation rule 

Q + q = B  (2.12a) 

and by the energy conservation rule 

h 2 
2mn (kZ-k°2)= + hcoj(q). (2-12b) 

The minus sign in (2.12b) corresponds to the phonon 
absorption process in which the neutron gains energy, 
and the positive sign to the phonon emission process 
in which the neutron loses energy. The same conser- 
vation rules apply to first-order X-ray scattering, but, 
as the phonon energy hooj(q) is negligible compared 
with the energy of the X-ray phonon, (2.12) reduces 

• • e 0 

EWALD SPHERE 

k=ko= 2rr 
~k 

(a) 

\ 
\ 

• • • ~ • 
\ ~  EWALD SPHERE 

S % 

• ~ :  k< ko 

C 

. • y . o - T O  
- - C    ,NOSU F OE 
(b) I EWALD I . 

<SPHERE J s  k>ko 
• • \ k , / '7|  

~ /  ~ATTERING 

c ~ / °  P\' B 

• • "--'---a= ~O ko, 

SURFACE 

(c) 
Fig. 3. Reciprocal lattice diagrams representing: (a) zero-order 

(Bragg) scattering of neutrons, (b) first-order scattering of 
neutrons with loss of neutron energy (phonon emission), 
(c) first-order scattering of neutrons with gain of neutron 
energy (phonon absorption). The scattering surfaces in (b) 
and (c) are shown schematically only: their exact shapes are 
determined by the conservation rules, equations (2.12). 

to k = k o  (see Fig.2). The energy of slow neutrons is 
comparable with phonon energies, and so the scatter- 
ing surface, giving the locus of points in reciprocal 
space satisfying the scattering conditions (2.12), is more 
complicated than for X-rays (see Fig. 3). The scattering 
surface is different for phonon absorption and phonon 
emission, and each branch j of the phonon dispersion 
curves can have its own distinct pair of scattering sur- 
faces. For this reason, the evaluation of the TDS cor- 
rection for neutrons, discussed in Part C, is less straight- 
forward than for X-rays. 

The cross-section for coherent first-order scattering 
involving modes with wave vector q is 

da(q) ~ _ NO 2 k 

dQ ] a 2m ko 

3. Ej(q) +_ ½hooj(q) 
x Z IGj(Q)I 2 (2.13) 

j=a I/Jlco~(q) 

which is to be compared with the corresponding X-ray 
formula (2.10). The Jacobian Jj can be expressed in 
terms of the neutron velocity Vn and the group veloc- 
ity Vj(q) of the mode (jq): 

Vn.  Vj(R) (2-14) 
ISJl= 1 + v= 

The cross-section for phonon emission is obtained by 
choosing the positive sign in (2.13) and (2.14), and the 
cross-section for phonon absorption by choosing the 
negative sign. 

In Part B we shall consider the modification of the 
zero-order scattering formulae to account for anhar- 
monicity, and in Part C we shall use the first-order 
scattering formulae to evaluate the TDS correction. 
We shall not consider the effect of anharmonicity on 
the first-order cross-section: readers interested in this 
subject are referred to Kashiwase (1965) (X-rays) and 
to Thompson (1963) (neutrons). 

B. EFFECT OF ANHARMONICITY ON THE 
MEASURED INTENSITIES 

3. Theory for coupled anharmonic oscillators 

To obtain a general expression for the Bragg inten- 
sity, which includes anharmonic contributions to the 
Debye-Waller factor, we return to equation (2.2). In 
the classical or 'high temperature' limit, the time aver- 
age in this equation can be evaluated as an ensemble 
average using the expression 

( exp [ iQ.  (u(hc)-u( l '#) ) ] )  

= ( I I I . . .  

(III... f 
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where V is the potential energy of the total system of 
coupled oscillators, and the integration is carried out 
over the 3nN cartesian coordinates dxldx2dx3 . . .  of 
the nN atoms in the crystal. The Debye-Waller factor 
is related to the cross-section for Bragg scattering, 

- (d~)  , -  and is given by those terms in (3.1) which 
d~. o 

are independent of both hc and l'x': the remaining 
terms are related to the cross-sections for first-order, 

second-order . . ,  thermal diffuse scattering, (d~__) , 
1 

d@)  Thus the effect of thermal motion the on  
2 

Bragg intensity is equivalent to multiplying the scat- 
tering amplitude of each atom hc by the temperature 
factor 

T~(Q) = ( exp [ iQ.  u(hc)]) (3.2) 

where u(hc) is the displacement of the xth atom in the 
lth cell. 

Anharmonicity is taken into account in equation 
(3.1) by extending the expression (2.4) for the potential 
energy to include the cubic-anharmonic term 

Z Z Z ux(lx)uz,(l'x')ux,,(l"x") 
xlt¢ x ' l ' • "  x " l " t ¢ ' "  

× [83 V/Sx(lx)Sx'(l'~c')Ox"(l"x")]o 

and the quartic-anharmonic term 

X X X X x( ) z (  K)Ux,,tt x )uz"'tt x ) u "lx'u ,'l . . . . . . . . . . . . . . .  '"" 
x l x  x ' l ' x "  x " l " x ' "  x ' " l ' " t c ' "  

! t t t t  t /  t !  t i t  t i t  i l l  x[84V/Ox(Ix)Ox(lx)Ox (l tc )8x (l x )]o. 

The calculation of the cubic-anharmonic and quartic- 
anharmonic contributions to the Debye-Waller factor 
from equation (3.1) has been attempted by a number 
of authors, including Krivoglaz & Tekhonova (1961), 
Hahn & Ludwig (1961), Maradudin & Flinn (1963) 
and Kashiwase (1965). Kashiwase's analysis was ex- 
tended to low temperatures using quantum statistics, 
but in this paper we shall discuss only the classical 
high-temperature range, where anharmonic effects are 
expected to be largest. The most detailed analysis is 
that of Maradudin & Flinn, who considered a mon- 
atomic crystal with atoms arrayed at the points of a 
cubic Bravais lattice: their calculations are extremely 
lengthy, but the main results can be reproduced readily 
by using an Einstein model of the crystal (see section 
4.4 below). By treating the crystal as an Einstein solid, 
whereby each atom vibrates in a potential field which 
is not affected by the motion of the neighbouring 
atoms, the evaluation of (3.1) is much simplified, and 
the extension of the anharmonic analysis to any type 
of crystal structure is then possible. It is well-known 
(e.g. James, 1962, page 25) that the harmonic theories 
based on coupled oscillations and on independent 
oscillations give equivalent results for the influence of 
temperature on the Bragg intensities. 

4. Theory for independent anharmonie oscillators 

The temperature factor T~(Q)= exp [ -  W~(Q)] is given 
by the average (exp ( iQ.  u~)), where u~ is the ther- 
mal displacement of atom x. In the harmonic approx- 
imation, the average obeys a Gaussian distribution 

W,¢= ½((Q. u,~) 2) 

but anharmonicity introduces additional terms in W~ 
which are of higher order in Q than quadratic. 

For an Einstein solid, we can determine the quantity 
(exp ( iQ.  u~)) by weighting each possible value of 
exp ( iQ.  u~) by its thermodynamic probability, using 
the equation [cf equation (3.1)]: 

( exp ( iQ.  u~)) 

= (I I I~_ exp [ -  V, ffkBT] exp (iQ . u,~)duldu2du3)/ 

(I I f~_ exp[ -  V, ffkBT]duldu2du3) . (4.1) 

Ul,U2, U 3 are the cartesian coordinates of the displace- 
ment u~, and V~ is the potential energy of the xth atom, 
vibrating as an anharmonic oscillator in the average 
force field of its neighbours. If V~ is expanded as a 
power series in the coordinates ua,uz, u3, referred to an 
origin at the equilibrium position of the atom, the 
integrals in the expression for the temperature factor 
reduce to standard forms. We shall illustrate this pro- 
cedure by considering atoms with different types of 
cubic coordination in a cubic crystal. 

4.1. Potential of  atom in cubic crystalline fieM 
In the harmonic approximation, the potential ex- 

pansion terminates at the quadratic term and is of the 
form 

V~= Vo+± 2 20~K(U 1.3L/22 -t-//2) (4"2) 

where the parameter g~ is related to the mean-square 
displacement u2~, in any direction by 

kBT 
~,~- _ ( 4 . 3 )  

Anharmonic modifications to V~ are represented by 
third-order and higher-order terms added to the right- 
hand side of (4.2). These anharmonic terms are either 
isotropic (i.e. dependent on the magnitude only of u~) 
or anisotropic. 

Isotropic terms which can be added to (4.2) are of 
the form 

7K(Ul 2 -t-/22 +/22) 2 , E1¢(/212 -t-/222 -{-/22)3, (4"4) 

and are even-order in the powers of ul, u2, u3. In general, 
there is a softening of the vibration at large amplitudes, 
so that the signs of the potential parameters 7., e~ . . .  
are likely to be negative. 
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Anisotropic terms represent the influence of the local 
crystalline field in producing an angular dependence 
of the potential V(u~u2u3). They are written conve- 
niently in such a way that their average value over the 
surface of the sphere of radius r(r 2 = u~ + ~ + ~ )  is 
nothing. The third-order anisotropic term appropriate 
to ~3m point symmetry (e.g. diamond structure) is 

fluUlUzU3 . (4.5) 

This gives rise to four tetrahedral lobes along (111). 
We would expect the potential to increase along 
nearest-neighbour directions, so that flu is positive if 
the coordinate axes are chosen so that the atom x has 

a nearest neighbour along [111] and flu is negative if 
the nearest neighbour is along [liT]']. 

For an atom occupying a site with a centre of inver- 
sion, the odd-order terms in the expansion of V vanish 
and the first anisotropic term is fourth order, of the 
form 

6u(U~l + U~2 + U~3 ---~r4 ) . (4-6) 

For du positive, there are six lobes pointing along the 
(100) directions: this is appropriate, therefore, to 
atoms with octohedral coordination, as in the rocksalt 
structure. For du negative, there are eight lobes point- 
ing along (111), and this would apply to the caesium 
chloride structure, with cubic (8-fold) coordination. 

In the face-centred cubic structure, the atoms occupy 
sites of m3m symmetry and are coordinated to twelve 
nearest neighbours along the (110) directions. To 
obtain a potential with twelve lobes along (110) it 
would be necessary to develop the expansion of 
Vu(uau2u3) to sixth order. A suitable anisotropic term 
for this case is 

Mu~ + u~ + u~ + ~,-~(44 + u M  + ~ 4  

+ ~ + ~u] + ~u~) -  x-~-45r 61 (4.7) 

Ca) 

where p,¢ is positive. 
All the functions (4.2) to (4.7) possess local cubic 

symmetry, and the anisotropic terms (4.5), (4-6) and 
(4.7) are related to the first few 0c-type and fl-type 
'Kubic Harmonics' of von der Lage & Bethe (1947). 
The properties of some of these functions are illus- 
trated schematically in Fig.4. It is straightforward to 
write down corresponding functions for sites of non- 
cubic symmetry, but the number of independent par- 
ameters increases as the symmetry falls. 

By terminating the potential expansion at the fourth- 
order (quartic) terms, a suitable general expression for 
the potential of the xth atom in a cubic crystalline 
field is 

(b) 

(c) 
Fig.4. Modification of isotropic potential function by: (a) 

third-order term Buluzu3, giving four tetrahedral lobes along 
(111 ); (b) fourth-order term with di positive, giving six lobes 
along (100); (c) fourth-order term with 6 negative, giving 
eight lobes along (111 ). 

VK(UlU2U3) = Vo + ½O~ur 2 + fluuluzu3 

+ ~xr4+Ox(u~l +u~2+u~3-~r4) , (4.8) 

where r 2 = u~ + 2 2 u2 + u3. flu = 0 when the atomic site coin- 
cides with a centre of symmetry. This expression will 
be used for all cases considered below. 

4.2. Temperature factor o f  atom in cubic crystalline f ield 
If the displacement uu is such that the anharmonic 

terms in the potential (4-8) are small compared with 
knT,  we can write 

exp [ -  Vx(ulu2u3)/kBT] = exp [-- Vo/knT] 

× exp [ -  ½~u(~ + ~ + ~)/kBTq 

/~u ru ( u ~ + ~ + ~ ) 2  
x 1 -  kBT-UlU2U3- knT- 

} - k B T ( 4 + ~ + 4 - ~ r ' )  • 
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Inserting this into the expression (4.1) for the tempera- 

ture factor, and replacing Q.  u~ by 2zc (hlus +h2u2 
a0 

-[-h3u3) where a0 is the cubic lattice parameter, we 
obtain 

exp [ -  We(Q)]= M/N 
where 

M=fSI~_ooexp[-½o~(u~+u~+u])/kBT] 

x exp [2 ;~ i  1 (hlUl q- h2u2 Jr h3u3)] d~lxdu2du 3 L ao 

~e 
kBTIII~_ooUsUzu3exp[-½o~e(u~+u~+u])/knT] 

x exp [2rci +hau3)] du,du2du3 t ao (hlUl+hzu2 

(re--}&) 

x exp [ -  ½cce(u~ + u~ + u])/kBT] 
[2z~i ] 

x exp l -~0  (hlUl +hzu2+ h3u3)] dulduzdu3 

-- .q- U2U 3 kBT 
x exp [-½a~(u~ +u~ +u])/knr] 

x exp [2z¢i (h,ux +hzuz+ h3u3)] duxduzdu3 (4.9) 
Lao J 

and 

N=III~_ooexp[-½c~e(u~+u~+u])/kBT]dulduzdu3 

pe    IIILUlU U exp -    
x (4 + u~ + u])/knTlduldu2du3 

(r,~+]&) 

× exp [-½ae(U~ + u~ + u])/kBT]du~duzdu3 

- 2(7e-3fie)kBT .~_ItI'I°°oo(u~u~ +22UaU3 + u3u, 

x exp [ _t 2 -za,c(ul +u2+u2)/kBT]duldu2du3. (4.10) 

All the integrals in (4.9) and (4.10) can be evaluated 
using the standard relations: 

IIILexv - (u +u +u    
x exp [2iB(hxu~ + h2uz + h3u3)]duldu2du3 = P ,  

IIILUlU U exp - (u +u .u )  
x exp [2iB(h~Ul + hzu~ + h3u3)]duldu2du 3 

iB3 
A3 hlh2h3P 

I I f~_oo(u4 + u4 + u4) exp [-  A(u~ + u~ + u])] 

x exp [2iB(hlUl + hau2 + h3u3)]dulduzdu3 
[ 9  3B 2 B 4 ] 

= . . . . .  4 4 4 4~ z A3 • (h~ + h~ + h]) + . ~  (h, + h2 + h3) P,  

poo 
111-oo (u~u~ + u~u] + u]u21) exp [-A(u~ + u~ +u])] 

× exp [2iB(hlux + hzu2 + h3u3)]dulduzdu3 
3 B 2 

- 4A z A3 (h~ + h~ +h~) 

B. ] 2 2  z 2 h]h~) P ,  + -A~ (hlhz + hzh3 + 

where 

P =  (_~_)312 exp [- (B~)(h~+h~ +hi)]. 

The final expression for the temperature factor works 
out as- 

with 

exp [ -  We(Q)]= Nx exp [ 
Q2kBT] 

2ae J 

ao / -ff~ (hi+ hi +hi) 

+i(kBT) 2 (-~-0~) 3 (fl--~-~)hlh2h3 

( ) 4 ( 'e ) (h~ + h~ + h])2 -(kBr)3 ~. 

- ( k B Z )  3 (20~-)4 (-~-/(h4~_ 4h2..[_ ]/34 
\ ( ~ x /  

} -~[hl + h~ + hl]2) (4.11) 

For the harmonic crystal, fl~=y~=O~=0 and (4.11) 
reduces to 

[ -Q2-kBT] 
- = -2Qu,¢] exp [-W~(Q)]= exp 2c~e J exp[ x 2 z 

which is equivalent to equation (2.7). The additional 
terms which occur for the anharmonic crystal are 
either isotropic in reciprocal space and with magnitudes 
determined by the parameter y~, or anisotropic in 
reciprocal space and with magnitudes determined by 
the parameters fl~., ~ .  

Equation (4.1 1) does not give the dependence of the 
temperature factor on the temperature T explicitly, as 
ax, fl~,Ye, fie will vary under the influence of thermal 
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expansion. The temperature variation for these poten- 
tial parameters can be accounted for by using the 
'quasi-harmonic approximation'. 

4.3. Quasi-harmonic theory 
If the crystal expands on heating, there is a softening 

of the force constants and a corresponding reduction 
in the frequencies o)j(q) of the normal modes of vibra- 
tion. It is usually assumed that the relative change 
in frequency Am/o) is the same for each normal mode 
and is proportional to the relative change in volume 
Av/v of the crystal. Thus 

Ao) Av 
- Ya . . . . . .  yazT.  (4.12) 

O9 V 

where the proportionality constant 7a is known as the 
Griineisen constant and X is the volume coefficient of 
expansion (Ziman, 1964). 

For a crystal with harmonic interatomic forces, the 
frequencies of the normal modes appear as 09 -2 in the 
expression for the temperature factor [see expression 
(2.9)]. We can allow, therefore, for the effect of thermal 

1 
expansion on the mode frequencies by replacing -~(q) 

in (2.9) with 
1 

o)b( O +-a-r a t ,  

which [from equation (4.12)] is 

1 
COo2j(q) (1 +2yazT) ,  

where o)oj(q) is the normal mode frequency in the ab- 
sence of thermal expansion. 

This is the modification of the harmonic Debye- 
Waller theory known as the 'quasi-harmonic theory'. 
The quasi-harmonic theory gives the same expression 
for the temperature factor as the harmonic theory, 
apart from an extra factor 1 + 27GxT: 

T/c(Q)q uasi-harm°nlc- Tx(Q)harm°ntc(1 -I- 27azT).  

In terms of the Einstein model, the same result follows 
by assuming that the potential parameter c~ in equa- 
tion (4.2) varies with temperature in accordance with 

o r  

1 1 

O~x ~ZOx 
- -  (1 + 27oxT) 

c~= c~0~(1 - 2yazT) 

where c~0~ is the value of ~ in the absence of expansion 
and it is assumed that 27azT~ l .  The anharmonic 
potential parameters, fl~,y~,6~ . . .  in equation (4.8), 
will also decrease as the neighbouring atoms move 
apart under thermal expansion, and we shall assume 
that the temperature dependence of these parameters 
is the same as for c~: 

a,Jao,¢=fl~/flo,~=y~:/yo,~=6,~/~o,¢= 1 - 2 y a z T .  (4.14) 

4.4. Compar&on with coupled oscillator treatment 
The explicit dependence on temperature of the tem- 

perature factor follows by combining equations (4.11) 
and (4-14). The resultant expression for 2W~ can be 
compared with the results given by the coupled oscil- 
lator treatment of Maradudin & Flinn for a cubic 
monatomic solid, by putting fl~=0 in (4-11) and drop- 
ping the subscript ~c. The Einstein treatment then leads 
to the following expression for the exponent of the 
Debye-Waller factor e -2w" 

2W= (_2a~_)z (h~+h~+h~) [-~0] kBT 

(2 )2 [2,Gx] 
+ -ao- (h~+h~+h~) [a-~B] (kBT)2 

r20 o] -(-2~o ) (h~+h~+h~) L o~j(kBT)Z 
+ \ ao I [ c~ 4 J (kBT)3 

_ ? ~ / 4  2 2 2 2 2 2 _!_ 4 
- -  ( ao ] (hlh2 + h2h3 + h3hl - ahx 

l/a4 1/,4"~ [ j  2~0 ] 
--3"2--~"3J [ 5~4o ] (kBT) 3 (4.15) 

where the quantities in square brackets are inde- 
pendent of temperature. 

The first term of (4.15) is the harmonic contribution 
to 2W; the second term is the thermal expansion cor- 
rection to the harmonic contribution; the third and 
fourth terms represent isotropic, anharmonic contri- 
butions arising from the quartic component of the 
potential; and the last term is the anisotropic, quartic 
contribution to 2W. 

The same set of five terms is given in the equation 
(6.11) of Maradudin & Flinn's paper. The two expres- 
sions for 2 W are nearly identical as regards the depen- 
dence of the individual terms on the temperature T 
and the Miller indices hlhzh3. The only important dif- 
ference in the two expressions lies in the interpretation 
of the temperature-independent quantities multiplying 
each term: in general, however, these quantities cannot 
be calculated directly and so must be treated as adjust- 
able parameters in analysing the intensity data. 

5. Calculation of  structure factors for Einstein solid 

For the elastic scattering of X-rays, the structure fac- 
tor F(Q) is calculated from the expression 

F(Q)=  _~ f~(Q)T~(Q) exp ( iQ.  r~), (5.1) 
K=I 

where the summation is over the n atoms in the unit 
cell. f~(Q) is the X-ray atomic scattering factor of the 
Kth atom, and T~(Q) is its temperature factor, r~ is the 
radius vector from the origin of the unit cell to the 
equilibrium position of the atom. 
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The temperature factor in (5.1) is given by 

T~(Q) = ( exp ( iQ.  u~)) (5.2) 

where ux is the thermal displacement. In the harmonic 
approximation, (5.2) reduces to the Ott expression: 

T~(Q)= exp ( - ½ ( Q .  u~)2). 

However, Dawson (1967a) has pointed out that, in the 
general anharmonic case, T~(Q) is a complex quantity 
of the form 

T~(Q) = Tc,~(Q) + iTa,,~(Q) (5.3) 

where Tc, x(Q) is centrosymmetric about the equilib- 
rium position of atom K and Ta, ~(Q) is antisymmetric. 
By expanding (5-2), we find that the centrosymmetric 
portion of the temperature factor is given by 

To, x(Q) = 1 -½((Q.  ux)2)+ 2~x((Q. Hx) 4) 

+ higher even-degree terms in Q.  u~, 

and the antisymmetric portion by 

Ta,~(Q) = - ~ ( ( Q .  u~)3)+ ~2-~((Q. u~) s) 

+ higher odd-degree terms in Q.  u~. 

The X-ray atomic scattering factorf~(Q) can be sub- 
divided in the same way into centrosymmetric and 
antisymmetric parts, and this subdivision has been ex- 
ploited by Dawson (1967a, b,c ,d)  in the interpretation 
of X-ray measurements on diamond, silicon and ger- 
manium. We shall avoid this extra complication here 
by writing (5.1) in the equivalent form for neutron 
scattering. This is done by replacing f~(Q) with the 
nuclear scattering length b~, which is a scalar quantity 
independent of Q. 

Substituting (5.3) into (5.1) and writing 

F(Q) - A(Q) + iB(Q), 
we have 

A(Q)= Z b,~[To,,~(Q) cos (Q.  r~) 
/¢ 

- T,,~(Q) sin (Q.  r~)] 
and 

B(Q)= N b,,[ Te, ,,( Q) sin (Q. r~) 
/¢ 

+ T,,~(Q) cos (Q. r~)]. (5.4) 

Equation (5.4) will be used to calculate the structure 
factors for a few standard structure types. F(Q) will 
be determined first in terms of the centrosymmetric 
and antisymmetric components of the temperature 
factors of the n atoms in the unit cell; expressions for 
the Tc,,~'s and Ta,,,'s will then be inserted, using the 
results of § 4. 

5-1. Rocksalt  structure 
The atomic coordinates (X=cation, Y-=anion) are 

x" °°° ~ °  ½°k ko°~o} Y: { ~  00~ 0½0 . (5.5) 

The site symmetry of both ions is m3m, so that the 
centre of symmetry at each site requires that Ta, ~=0 
for X and Y. Moreover, the presence of a centre of 
symmetry at the origin of the unit cell requires that 
B(Q) = 0 in equation (5.4), and so the structure-factor 
equation reduces to 

F(Q)= Z b,cTc,,,(Q) cos (Q.  r~). 
K 

Putting 
Q.  r = 2zt(hlX~ + h2x'2 + h3x'3) 

where x~,x'2,x'3 are the fractional coordinates in (5.5), 
and summing over the X and Y sites gives: 

F ( Q ) -  F(hlh2h3) = 4bxTe, x + 4byTe, y . . . h,k,  l even ] 
=4bxTe,  x - 4 b y T e ,  v h,k,  l o d d  ~. 
=0 h,k,  lmixedJ  

(5.6) 
Here bx, bY are the scattering amplitudes of the X,Y 
ions and Te, x, To, Y are their (centrosymmetric) tem- 
perature factors. 

Tc, x and Tc, Y are given by equation (4.11) with 
fl~=O. Thus 

r_  2k, 1 { (,x) Te, x = N x e x p [  2ctx J 1-15kBT ~ :  

+IO(kBT) 2 ( 2 : )  2 ( ' X  / (h~ + h~ + h~) 

--(kBr) 3 ( 2 0 : ) 4  (--~X)(h12 21-h 2 -~-h32) 2 

where 

2 2  22__ } - 3hlh2-  3h2h a 3h]h~) , (5.7) 

~x, 7x, dx are the parameters in the expression 

VX(UlU2U3) = V 0 -~- k~zx(u~ 21- u~ 2 2 2 2 2 + us) + 7X(Ul + u2 + u3) 

+ 6x(u~ + ~ + ~-~[u~ + u~ + uF), 

which represents the expansion of the potential of the 
X ion in powers of the cartesian coordinates ubu2,u3 
of the thermal displacement of the ion. The same equa- 
tion (5.7) also applies to the Y ion with X replaced by 
Y throughout. 

We can simplify (5-7) by noting that the term 

in the brackets { } is much larger than the term 

4 7 x  
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in the same brackets. Thus the ratio R / S  

ex 5ao 2 1 
. . . . . . . . .  

k n T  2g 2 " h~+ 2 • h2 + h3 

1 5a02 1 
- " h2 + h3 (.~,) 2~2 • h , ~ + 2  2 .  

For NaCI and KC1, the mean-square atomic displace- 
ment (u 2) ~ 10-3ao 2 at 20 °C, so that 

R/S>> 1 

except at high temperatures and high values of sin 0/2. 
Similarly, we can show (taking 7x ~ fix) that the term 
R is much greater than the last term 

( )4 4 4 4  

\ a x /  
2 2 2 2 - 3 h l h z -  3h2h3 - 3h]h~) 

in equation (5.7). R is a quadratic term in the compo- 
nents of Q and S, U are quartic terms; the same con- 
clusion regarding the relative magnitudes of the quad- 
ratic and quartic terms is given by the coupled- 
oscillator treatments of Maradudin & Flinn (1963) and 
Kashiwase (1965). 

Thus omitting the quartic terms from (5.7), and 
writing e -x ~ 1 -  x for x,~ 1, the temperature factor of 
the X ion is given approximately by 

To, = e x p x  [ -  2c~xQZkBT (1-20kBT-~X-) ] .  (5.7a) 

In terms of the temperature-independent potential par- 
ameters, ct0x and 70x, this can be written [see equation 
(4.14)] 

k B T  (1 +2zy~T) 
To, x = exp - 2-~0x 

y0x x ( 1 - 2 O k B T  ~ - ~ ]  Q2] , (5.8) 

½a0 

Fig. 5. Coordination of an atom in the diamond structure. 
Centres of symmetry are located half way between adjacent 
atoms but not at the atomic sites, so that the temperature 
factor has a non-vanishing antisymmetric component. 

or 

Bx(T) - 
( [ '°xl 8g2kBT 1 + T 2 X y a -  20kB -~2oX 

~0X 

+ terms in T 2, T 3 . . .  ) (5.9) 

where Bx(T) is the isotropic B-factor of the X ion at 
temperature T, defined by 

Te, x = exp ( - Bx(T) sinE0/2 2) • 

Equation (5.9) (with an identical equation for the 
Y ion) shows that the anharmonic contribution to the 
temperature factors of crystals with the rocksalt struc- 
ture can be expressed approximately as an increase AB 
in the isotropic B-factors. AB for atom • ( = X  or Y) is 

AB,~=Bnx . T[2xya--2OkByo,JO~,¢] (5.10) 

where the harmonic B-factor is 

B~ = 8rc2k BT/O~o,~ . 

Thus, in the harmonic approximation, Bx and By are 
proportional to temperature. In the anharmonic crys- 
tal, an extra term appears in the expression for the 
B-factor. This term is proportional to T z and is com- 
pounded of two parts: one due to thermal expansion 
and the other due to the quartic modification of the 
potential and representing the softening of the vibra- 
tion at large amplitudes• Equations (5.9) and (5.10) will 
be used in {} 6 to interpret experimental data recorded 
at different temperatures on KC1. 

5.2. Diamond structure 
There are eight identical atoms in the cubic unit cell, 

each tetrahedrally coordinated to its four nearest 
neighbours (Fig. 5). Choosing an origin at the centre 
of symmetry midway between two atoms, the atomic 
coordinates are: 

~ ~ ~{t (A sites) 
and 

~-~ -},}-~ ~ (B sites). (5.11) 

With this choice of origin, B(Q)=0  in the structure- 
factor expression 

F ( Q ) = A ( Q ) + i B ( Q )  . 

All atoms are at sites of cubic tetrahedral (~3m) sym- 
metry. 

Inserting the coordinates (5.11) into (5.4) gives 

-- Ta, a sin 4 -  

where b is the scattering amplitude, Te, A is the centro- 
symmetric component and Ta, A is the antisymmetric 
component of the temperature factor of atoms on the 
A sublattice. The corresponding components, Te, B and 
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Ta, n, of the temperature factor for the B sublattice are 
related to To, ̀ 4 and Ta, A by 

Tc, B= T~,A , Ta, B= - T . ,A  . 

The structure factors subdivide into four groups, de- 
pending on the value of the index sum, hx+hz+h3.  
Thus 

F(hahzh3) = 8bTc, ,4 for ha + h2 + h3 
= 4n, group (i), 

=8bTa,  A for hx+hz+h3 
= 4n + 2, group (ii), 

=4V2b(Te,  ,4 + Ta, .4) for hi +hz+h3 
= 4n + 1, group (iii), 

= 4 I/2b(Tc, `4 - Ta, .4) for ha + hz + h3 
= 4 n -  1, group (iv).  

(5-12) 

of the intensities from the harmonic values. The devia- 
tion is largest for 755, because its diffraction vector is 
closest to the tetrahedral direction joining nearest 
neighbours, and is smallest for 177 whose diffraction 
vector is closest to [100]. The intensities of 666 and 
864 in Fig. 6 arise solely from the anharmonic contri- 
bution to the temperature factor. 

5-3. Fluorite structure 

In the rocksalt structure, the atomic site symmetry 
is m3m, so that there is no antisymmetric component 
of the temperature factors. The site symmetry is 43rn 
in the diamond structure, and the antisymmetric com- 
ponent represents the most important anharmonic con- 
tribution to the temperature factor. Both types of site 
symmetry are present in the fluorite structure. 

The atomic coordinates are 

Note that Ta, A = 0 for a harmonic crystal, so that the 
4n + 2 reflexions are forbidden: they are not forbidden 
if anharmonic vibrations are taken into account. (In 
X-ray scattering, the presence of 4n + 2  reflexions can 
be associated with the antisymmetric component of the 
scattering amplitude, but there is no such component 
in neutron nuclear scattering.) 

Explicit forms of To, A and Ta,.4 in equation (5.12) 
are derived from equation (4.11). The expansion of the 
potential function now includes a third-order term 
fl.4uauzu3 - 

V (uau2u3) = Vo + ½o~ ̀4r z + flAUl U2U3 
+ higher-order terms 

- and if higher-order terms are neglected (7 = d . . .  = 0), 
To, ,4 and Ta,.4 are given by 

[ QZkBT] 
To, a = e x p l ~  2~a ] 

and 

exp ( 
2aa -ao 

× ( ~ ) h l h 2 h 3 .  

(5.13) 

Equations (5.13) have been used by Dawson & 
Willis (1967) to calculate the intensities of reflexions 
in the groups (ii), (iii) and (iv) of (5.12); all these re- 
flexions involve the third-order anharmonic parameter 
flA. Some of their results are given in Fig.6, which 
shows the influence of temperature on the calculated 
intensities of 666 and 864 in group (ii), 755 in group 
(iii), and 177 and 933 in group (iv). The calculations 
relate to germanium: they indicate only qualitative 
behaviour as there is no experimental value available 
for ft.4, which was assumed to be 10 -n  erg m -3 and to 
be independent of temperature. The three reflexions 
755, 177 and 933, sharing the same value ofh~ + hz2 + h3 ,2 
are equal in intensity for the harmonic crystal (broken 
line in Fig. 6). Anharmonic vibrations cause a deviation 

x: ooo ½% 
Y: ,/ (5.14) 

where X refers to the cation positions and Y,Y'  to 
the anion positions. Each cation is surrounded by eight 
anions at the corners of a cube and each anion by four 
cations at the corners of a regular tetrahedron (see 
Fig.7). X sites have m3m symmetry and Y,Y'  sites 
43m symmetry. 

5 i 

m 

4 ~  

3 - -  

2 - -  

1 - -  

\ 

,",, ,, ,, 775 

177 

666 

400 600 800 

T(°C) 

Fig.6. Variation with temperature of Bragg intensities of 
germanium, calculated assuming fl.4=10 -11 erg./~-3. The 
broken line gives the intensities of 755, 177 and 933 for 
flA = 0 (after Dawson & Willis, 1967). 



Putting the coordinates (5.14) into (5.4): 

F(hlhzh3)=4bxTc, x+8byTc, Y forhl+hz+h3=4n } 
= 4bxTe, x -  8bvT~, y for hi + h2-a t- h3 = 4n + 2 
= 4bxTe, x -  8byTa, y for hi + h2 + h3 = 4n + 1 
= 4bxTe, x + 8byTa, ~ for hi + h2 + h3 = 4n - 1. 

(5.15) 

bx is the scattering amplitude of the cation, To, x the 
centrosymmetric part and Ta, x the antisymmetric part 
of the temperature factor of the cation, with similar 
quantities, br¢, To, Y, Ta, Y, referring to the anion at a Y 
site. The relations 

T , ,x=0 ,  Tc, y = Tc, Y', T,, y = - T,, y' 

have been used in deriving (5.15). 
If the potential function V(UlU2U3) for both cation 

and anion is expanded up to the fourth power of the 
displacement, the temperature factors Te, x and Te, Y 
in (5.15) can be written from equation (5.7a) as: 

CATION 

a0 

ANION 

½ao 
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Fig. 7. Coordinat ion  of anion and cation in fluorite structure. 

andTe' x=  exp Q2kBT(1-2OknT~X-)] 1 2 e x  (5.16) 

Te,¥= exp [ - Q 2 k B T  (1-20kBT Yc~;)] 
2c~y 

The antisymmetric component Ta, Y is given by the 
imaginary part of equation (4.11): 

Ta, Y= 1 - 1 5 k n T ~ -  exp - 2~y ] 

x (kBT)Z(~o)3(ff~;-)hlhzh3. (5.17) 

We have taken the potential for the cation as 

Vx(UlU2U3)= V0x + ½~x(u~ + u~ + u]) + yx(u~ + u~ + .~)2, 

and for the anion 

V¥(UlU2U3) = V0¥ --1- ½cxY(Ul 2 + u2 2 --[- u~) 
+ ~yu, u2u3 + ry(u~ + u~ + u])~. 

It is shown in the next section that the available ex- 
perimental data on fluorite-type crystals can be inter- 
preted satisfactorily from equations (5.15), (5.16) and 
(5.17), taking the quartic parameters, 7x and 7Y, as 
ze ro .  

6. Experimental results 

It is customary to use the Debye-Waller theory, based 
on the harmonic approximation, to account for the 
effect of thermal motion on the Bragg intensities. To 
assess the importance of the anharmonic modifications 
to the Debye-Waller theory, discussed in the earlier 
sections of Part B, observations are required over a 
range of temperatures, preferably on crystals with 
relatively simple structures. Unfortunately, observa- 
tions of this kind are extremely few. 

We choose the data of James & Brindley (1928) on 
KC1 to analyse the influence of anharmonicity on the 
Debye-Waller factors determined with X-rays. These 
measurements, carried out forty years ago with an 
ionization chamber as detector, are still the most ex- 
tensive measurements on a crystal with the rocksalt 
structure. They have been analysed by Kashiwase 
(1965), using the anharmonic theory based on the 
model of coupled oscillators, but we shall show that 
essentially the same results are given by an analysis 
based on the simpler approach described in § 4 and 5. 

Suitable neutron studies at high temperatures are 
restricted largely to fluorite-type compounds. The most 
detailed observations relate to BaF2, and the analysis 
of these is described in § 6.2. 

6" 1. Potassium chloride (X-rays) 
James & Brindley examined the intensities of the 

400, 600 and 800 Bragg reflexions in the temperature 
range 86-936°K. Their experimental measurements, 
given in Table 1 of their paper, are reproduced here 
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in the first three columns of Table 2. The second 
column in Table 2 lists the temperature T at which 
measurements were made of the integrated intensity 
Q(T), and the third column gives the ratio o( T)/Q( To), 
where Q(T0) is the integrated intensity at the reference 
temperatme, To, of 290 °K. 

The intensities Q(T) recorded by James & Brindley 
included a contribution from thermal diffuse scattering. 
The corrected intensities are 

Qeorr(T) = 4 ( T )  + (1 + 

where the correction factor for TDS is 1 +a .  The 
method of calculating a for KC1 is described later, 
in § 9-1, and this procedure was used to derive the 
corrected ratio Qe°rr(T)/Qccrr(To) in the fifth column 
of Table 2. 

The final column of the Table lists the quantity 

( s i ~ 0  ) 2 In [Qcorr(T)/~)corr(To)] • 

The Debye-Waller factor at temperature T is 
exp [-2B(T)sin20/22], so that this quantity is equiv- 
alent to 

2[B( T) - B( To)] , 

where, from equation (5.9), 

70 t ]  o (6.1) 

The masses of the K and C1 ions are sufficiently close 
to justify using the same B-factor for both ions, so 
that the subscript X can be dropped in the expression 
(5-9). 

Theoretical values of the harmonic B-factors, Bh(T) 
in (6.1), have been calculated recently by Buyers & 
Smith (1968) for the temperature range 0 to 900°K, 
using published data for the frequencies ogj(q) and 
eigenvectors ej(q) of KC1. The broken line A in Fig. 8 
corresponds to the harmonic theory, based on Buyers 
& Smith's calculations. Because of the effect of an- 
harmonicity, the experimental points (closed circles) 
lie appreciably below this line. 

Curve B in Fig. 8 has been drawn using equation 
(6.1) in its quasi-harmonic form, that is, by retaining 
the thermal expansion term but writing 

Y D_ ~ 0 .  

Curve C represents the anharmonic form of equation 
(6.1) with 

70 = - 0 . 1 4  1012 erg -I 
ct02 • . 

This latter value was chosen so as to make the an- 
harmonic curve pass through the experimental points 
at the highest temperatures, where the influence of 
anharmonicity is greatest. The harmonic parameter a0 

v 

-12 - - -  QUASI-HARMONICTHEORY 

ANHARMONIC THEORY 

I I I 
4 0 0  600  800  1000 

T("K) 

Fig.8. The logarithm of the integrated intensities from KCI 
plotted against temperature. Experimental points of James 
& Brindley (1928) shown as closed circles. Curve A was 
calculated using the harmonic Debye-Waller theory; curve 
B was calculated using the quasi-harmonic theory, to include 
the effect of thermal expansion; curve C was calculated 
using the anharmonic theory, accounting for both thermal 
expansion and quartic anharmonicity. 

Reflexion 

400 (sin 0/2 = 0.3211) 

600 (sin 0/2 = 0.4819) 

800 (sin 0/2 = 0.6426) 

Table 2. X-ray measurements of  James & Brindley 

T q(T) 1 -}- 0C Oeorr(T)  

( ° K  ) a (-To-j 0e°r~(To) 
290=(T0) 1.00 1.03 1.00 
455 0.79 1.05 0.78 
543 0.72 1.06 0.70 
663 0.58 1.08 0.56 
807 0.43 1.10 0.41 
936 0.336 1.11 0.31 

412 0.73 1"12 0.68 
588 0.44 1.17 0-39 
652 0.35 1"19 0"30 

336 0"78 1"17 0.69 
430 0"48 1.22 0"40 
471 0.38 1.25 0-31 
587 0"21 1"31 0"17 

,~, 2 

(Oc°rrTo) ) 
0 

- 2"46 
- 3"46 
-5"69 
-8"77 

-11"33 

- -  1 . 6 9  
--4.09 
--5.14 

--0-91 
-2-19 
-2.80 
--4.36 
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is given by 
~0 = 8r#kB T/Bn(T) 

which works out  at about  2.10 -12 erg A -2, SO that  the 
anharmonic  parameter  70 is 0.6.10 -12 erg A -4. In cal- 
culating curves B and C in Fig. 8, the Griineisen con- 
stant for KC1 was taken f rom Slater (1939) and the 
mean expansion coefficient f rom Clark (1966). 

Thermal  expansion accounts for the bulk of  the an- 
harmonic  contr ibut ion to the Debye-Wal ler  factors, 
but  there is also a small quartic contr ibut ion repre- 
sented by the difference between curves B and C. This 
quartic term was ignored in the earlier analysis of  
James & Brindley's results by Paskin (1957). Its mag- 
nitude, calculated here for the Einstein model,  is in 
good agreement with that  calculated by Kashiwase 
(1965). However, a critical appraisal  of  the an_harmonic 
theory requires more  precise experimental data, such 

as could be obtained,  for example, by repeating James 
& Brindley's experiment using modern  diffractometer 
techniques. 

6.2. Barium fluoride (neutrons) 
Accurate neut ron  diffraction data are available from 

measurements on compounds  with the fluorite struc- 
ture. A number  of  binary compounds  have been ex- 
amined at different temperatures,  and Table 3 sum- 
marizes the composi t ions and temperature ranges 
covered. 

For  all the compounds  in Table 3, systematic 
intensity differences have been observed between 
independent  reflexions sharing the same value of  
Q2(= 167z2 sin20/22), and none of  these observations 
can be explained by the harmonic  (or quasi-harmonic)  
Debye-Wal le r  theory. In the earlier work, the dif- 
ferences were accounted for in terms of  a phenom- 

Compound 
UO2 

ThO2 
CaF2 

CeO2 
BaF2 

Table 3. Fluorite-type compounds examined with neutrons 

Temperature range Reference 
4-1370°K Willis (1963a, b) 

Willis & Taylor (1965) 
Dawson, Hurley & Maslen (1967) 
Rouse, Willis & Pryor (1968) 

290-1370 °K Willis (1963a, b) 
290- 770°K Willis (1965) 

Dawson, Hurley & Maslen (1967) 
290°K Valentine & Willis (1965) 
290- 870°K Cooper, Rouse & Willis (1968) 

hlh2h3 
511 
333 
711 
155 
355 
733 
555 
911 
933 
177 
755 
377 
11, 
577 

1,1 } 

Table 4. BaF2: observed values of e-2W for odd-index reflexions 
(from Cooper et al., 1968) 

hi 2 + h22 + h32 

27 

51 

59 
67 
75 
83 

99 

107 

123 

20°C 88°C 159°C 239°C 317°C 398°C 596°C 
0.75 0.76 0.72 0-63 0.61 0"55 0"46 

- - 0"73 - 0"64 0"61 0"56 
0"63 0.60 0"54 0.46 0"41 0.34 0"24 

- 0"59 0"51 0"42 0.37 0"30 0"21 
- 0.60 0"52 0.45 0.41 0"35 0"27 

0"56 0'52 0"46 0"38 0"34 0'28 0"20 
0.48 0"41 0.32 0"24 0" 18 0" 12 0"058 
0.48 0"43 0.35 0"27 0.21 0"16 0"087 
0.39 0.33 0.25 0.17 0.13 0.089 0"040 
0"42 0.35 0"27 0.19 0"14 0"10 0.047 
0.45 0"41 0.34 0"26 0.22 0"17 0"098 
0.43 0"38 0.30 0"23 0.18 0"13 0.073 
0'35 0.30 0.22 0.15 0"11 0.073 - 
0.29 0"22 0"15 0.092 0.060 0.036 - 

hlh2h3 
511 
333 
711 
155 
355 
733 
555 
911 
933 
177 
755 
377 
11, 1, 1 
577 

Table 5. BaF2" observed values of  e-2W for even-index reflexions 
(from Cooper et al., 1968) 

hlh2ha hi 2+h22+h32 
222 12 
600 } 36 
244 
622 44 
644 68 
266 76 
10, 0, 0 100 
666 } 108 
10, 2, 2 

20°C 88°C 159°C 239°C 317°C 398°C 596°C hlh2h3 
- - 0"71 0.64 0"61 - 0"47 222 

0"51 0"47 0"39 0.30 0.24 0"18 0"080 f 600 
0"52 0.45 0.38 0"29 0"24 0"18 0"084 ~ 244 
0"45 0"39 0"30 0"23 0.17 0" 12 0"041 622 
0"28 0.21 0.15 0.090 0"056 0"031 - 644 
0"24 0.19 0.12 0"065 0.037 0.018 - 266 
0.15 0"095 0.050 0.019 - - - 10, 0, 0 
0.13 0.080 0.040 . . . .  f 666 
0"12 0"078 0"040  . . . .  ~ 10, 2, 2 
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enological theory, in which the anion at ~ is replaced 
by four '¼-anions' with coordinates ¼ + ~ ¼ + fi ¼ + &, 
¼+~ ¼ - ~ ¼ - A  ¼ - ~ ¼ + ~ ¼ - A  k-~ ¼-~ ¼+~. ~ is a 
kind of anharmonic parameter related to the thermal 
displacement of the anion. The diffraction data in the 
later work were interpreted by means of the anhar- 
monic theory based on the Einstein model. The most 
comprehensive study to date is that on BaF2, and we 
shall show that this an_harmonic theory, as described 
in §§ 4 and 5, gives a complete account of all the ex- 
perimental measurements on this compound. 

The observed Debye-Waller factors, e -2w, express- 
ing the reduction in the Bragg intensities caused by 
thermal motion, are given in Tables 4 and 5 for odd- 
index and even-index re flexions of BaF2. All these ob- 
servations have been corrected for the contribution of 
thermal diffuse scattering (§ 9.2). At 20°C the 
intensity of the 11,1,1 reflexion is 20% greater than 
the intensity of 577, and at 398°C 11,1,1 has twice the 
intensity of 577: according to the harmonic Debye- 
Waller theory, the calculated structure factors are the 
same for both reflexions, and so the intensities should 
be equal at all temperatures. Similar intensity differ- 
ences exist between odd-index reflexions in other 
groups with the same Q2 (e.g. 933, 177 and 755, or 
711 and 155; see Table 4). Moreover, the stronger 
intensities are associated with reflexions of the type 

hi -l+ h2 + h3 = 4 n +  1 

and the weaker intensities with 

hi +h2+h3 = 4 n -  1 . 

The negative sign for/7o, F implies that the amplitude 
of vibration of the fluorine ion is least along the [111] 
direction towards the nearest barium ion and greatest 
along the [111] direction pointing towards an open 
position in the fluorite structure. The observed Bragg 
intensities could be accounted for completely by equa- 
tion (5.15), with 

and 

bx=bBA(=0"52.10 -12 cm),  
by =bF(=0"56.  10 -12 cm),  

To, x = exp [ 2eBA Q2], 
kBT 

k 

Te, Y = exp [ -  kBT _~_f QE] 

( 2rc_~ 3 flF (kBT)2hlh2h3 
r,,, y =  ', ao I ~ -  

[ Q2 "r-I 
x exp - 2~F J '  

where 

0CBa/0C0,Ba = 0Cd0~0, F =flF/~0, F :  1 - 2zy~T 

(6.3) 

and ~0, Ba, ~0, F, f l0,  lq' are given by (6.2). ao=6"20 A at 
20°C and Z=8 .7 .10 -5°C  -1. 

In the absence of thermal motion, the structure fac- 
tors reduce to 

There is no noticeable splitting of the intensities in 
even-index groups with the same Q2 (e.g. 666 and 
10 2 2 or 600 and 244; see Table 5). 

From § 5.3, the principal anharmonic modification 
of the intensities arises from the third-order anhar- 12 
monic parameter, fly, characterizing the antisymmetric 
part Ta, y of the temperature factor of the fluorine 
anion. This antisynunetry causes a splitting of the in- 10 
tensities of odd-index reflexions with the same Q2, but 
produces no splitting of the intensities within even- o a 
index groups [equation (5.15)]. 

The BaFE intensities were analysed by Cooper et al. 6 
(1968) using equations (5.15), (5.16) and (5.17), assum- g 0s 
ing the quartic parameters to be zero. The final R value 
obtained at all temperatures was about 1%, which is 
close to the limit set by the accuracy of the observa- 0.4 
tions. Thus three potential parameters only, viz. the 
temperature-independent parameters c~0~ for barium 0.2 
and e0~, fl0~ for fluorine, were sufficient to account for 
the intensity measurements recorded at all tempera- 
tures. Taking the Griineisen constant as 2.1, these par- 0 
ameters worked out as 

~o,Ba = 5"54. 1012 erg fik -2 ] 
ct0, F = 3"59. 1012 erg A-E [ " 
/7o, F = -- 3"48. 1012 erg A -3 

(6.2) 

F'(hlhEh3) = 4b Ba + 8bF for hi + h2 + h3 = 4n ] 
=4b Ba-- 8bF for hl +hE+h3 = 4 n + 2  [ " 
=4bBa for hi +hE+h3 =4n + 1 

(6-4) 

I Ba F 2 : 20°C [ 
QUASI-HARMONIC THEORY 

HARMONIC T H E O R Y  / " + k  / o , ,  

- -  . / / i / i l i  

-- i , 
I / ~ _ / O D D  

- 

20 40 60 80 100 120 140 

Q2 

Fig.9. BaF2 at 20°C; plot of W(Q) versus QE. Experimental 
points for odd-index reflexions shown as closed circles, and 
for even-index reflexions as open circles. In the harmonic 
approximation W(Q) is proportional to QE. 
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The calculated Debye-Waller factors, therefore, are 

e-2W(O)_ ( F(hlh2h3) ) 2, 
F'(hlhEh3) 

where F(hlhEh3) is obtained from equation (5-15) and 
(6.3) and F'(hxhEh3) from (6.4). 

Figs.9 and 10 are plots of W(Q) versus Q2 at 20°C 
and at 398 °C respectively. The experimental observa- 
tions were taken from Tables 4 and 5, and the theo- 
retical curves were calculated using the quasi-harmonic 
theory (full lines: equations (6.3) with flF = 0) and the 
harmonic theory (broken lines: equation (6.3) with 
flF = 0 and g = 0). Neither theory can explain the odd- 
index data, but the quasi-harmonic treatment accounts 
satisfactorily for the Q-dependence of the even-index 
intenities. 

Plots of W(Q) versus temperature for a few odd-index 
and even-index reflexions are illustrated in Figs. 11 and 
12. The quasi-harmonic theory underestimates the 
Debye-Waller factors of the 577 reflexion, Fig. 11(a), 
and overestimates the Debye-Waller factors of 733, 
Fig. 11(b). The anharmonic theory accounts for the 
temperature-dependence of both odd-index (Fig. l l) 
and even-index (Fig. 12) intensities. The chain-dotted 

2'0 

1"8 

1'6 
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1"2 

O 
v 
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Ba F2:398"C ] 

/h+k+l 
ODD 

• / 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

f / /  ~ QUASI-HARMONIC 
THEORY / 

. . . . .  HARMONIC THEORY 

/ /  

0 ¢  I I I I I I 
20 40 60 80 100 120 140 

Q 2  

Fig. 10. BaF2 at 398°C:  p lot  o f  IV(Q) versus Q2. Exper imenta l  
points  for  odd- index reflexions shown as closed circles, and  
for  even-index reflexions as open circles. In the ha rmonic  
approx imat ion  IV(Q) is p ropor t iona l  to Q2. 

line in Figs. 11 and 12 indicates the Debye characteristic 
temperature, below which the classical theory breaks 
down. 

We conclude from § 6 that anharmonic effects must 
be taken into account in the interpretation of accurate 
diffraction measurements. These effects are especially 
important for atoms occupying sites which are not 
centres of symmetry: in the case of BaF2 at 20 °C, the 
observed intensities differ by up to 20% from the values 
predicted by the (quasi-harmonic) Debye-Waller 
theory, and the discrepancy increases to 90% at 400 °C. 
Anharmonic effects are accounted for satisfactorily by 
using an Einstein model of the crystal. The temperature 
factor can be expressed as the sum of a centrosym- 
metric part and an antisymmetric part 

rx(Q) = Tc, ~(Q) + iTa, x(Q), 

and explicit versions of Tc,,~ and Ta,,, are derived by 
adopting a single-atom potential appropriate to the 
point symmetry of the site occupied by the atom x. 
For non-cubic symmetries, it may be necessary to use 
a poor approximation to the potential function, but 
if there is no centre of symmetry at the atomic site 
(as is generally the case) any approximation to Ta,,¢ 
is better than the Debye-Waller theory which always 
gives Ta,,, = O. 

C. EFFECT OF THERMAL 
DIFFUSE SCATTERING 

ON THE MEASURED INTENSITIES 

Thermal diffuse scattering (TDS) of X-rays or neutrons 
constitutes an important part of the background in a 
diffraction pattern. This diffuse scattering peaks at the 
same positions as the Bragg reflexions, and can lead 
to errors in the measured intensities (see Fig. 1). We 
shall see that the errors are unlikely to exceed 25% 
under normal circumstances: they can be calculated 
sufficiently well using the formulae (given in § 2) based 
on the harmonic approximation. 

The TDS close to the Bragg positions arises prin- 
cipally from first-order (one-phonon) scattering asso- 
ciated with the acoustic modes of vibration, and we 
shall assume that all other modes and higher-order 
processes can be ignored. It is implied in the following 
sections that the intensities are measured with a counter 
detector of fixed aperture, and that the Bragg intensity 
is estimated from the difference between the integrated 
intensity over the peak and the background intensity 
at the sides of the peak. The TDS correction for X-ray 
intensities measured by means of a photographic film 
is similar to that for a counter detector: for further 
discussion, see Annaka (1962). 

7. Theory  (X-rays)  

The differential scattering cross-section, associated with 
first-order scattering involving the three acoustic modes 
of wave-vector q, is given by equation (2.10a). For such 

A C 25A - 2 



294 THE A C C U R A T E  D E T E R M I N A T I O N  OF S T R U C T U R E  FACTORS 

low-energy modes (small q), q is proportional to the 
frequency co~(q), or 

~j(q) = IVjIq (7-1) 

where j =  1,2, 3 and Vj is the velocity of the mode with 
polarization state j. Substituting (7.1) into (2.10a): 

_ 3 E j ( q )  c o s 2 ~ j ( q )  { de(q) ~ NQZ IF(Q)I 2 z .............. (7.2) 
\ dD /1 mq 2 j=l V~ 

The total first-order intensity is obtained by inte- 
grating (7.2) over all the acoustic waves 'seen' by the 
detector during the scan across the Bragg reflexion. 
The scattering vector Q coincides with the reciprocal 
lattice vector B at the Bragg peak, so that, as a con- 
sequence of the momentum conservation rule 

Q+q=B 

for first-order scattering, smaller q values are seen by 
the detector at the central part of the scan than at the ex- 
treme positions. For this reason, the q-2 dependence 
of the intensity in (7"2) gives rise to a TDS peak coin- 
cident with the zero-order Bragg peak. 

7.1. Spherical approximation 
The volume of reciprocal space seen by the detector 

is approximately a parallelipiped, whose dimensions 
depend on the solid angle subtended at the crystal and 
on the type of scan [see Figs. 13(b) and 13(c)]. The 
proper calculation of the TDS correction is rather 
complicated, but a rough estimate of its magnitude 
can be derived by taking a sphere of radius qmax, 
centred on the appropriate reciprocal lattice point, as 
the volume seen by the detector [Fig. 13(a)]. 

The experimental determination of the Bragg inten- 
sity requires combining the integrated intensity, re- 
corded during the scan across the Bragg peak, with 
the background intensity at the sides of the peak. We 
must obtain expressions, therefore, for the first-order 
TDS intensity Ef  which is included in the peak meas- 
urement, and for the first-order TDS intensity E~ in- 
eluded in the background measurement. 

Ef  is given by 

Er=II (  , ,  a,a  

where the integration is over time t and solid angle D. 

1"5 

1"0 

0'5 

I Ba F2:577 REFLEXION I 

/~/ / /  / / 

I / / , ,  / 
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QUASI-HARMONIC THEORY 
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EXPERIMENT 

I J I 
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T ---,-- 

1'0 

t 
A 

0'5 

I Ba F 2 : 733 REFLEXION I 

( a )  0" ' 
200 

i III 

I 

400 

T 

ANHARMONIC 
THEORY 

QUASI-HARMONIC 
THEORY ] 

------  HARMONIC THEORY 

o I EXPERIMENT[ I 

600 800 1000°K 

Fig. 11. BaF2: W(Q) v e r s u s  temperature for (a) 577 reflexion (b) 733 reflexion. In the harmonic approximation W(Q) is pro- 
portional to 7". 
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Ba F 2 : 266 REFLEXION 
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Fig. 12. BaF2: W(Q) versus temperature for (a) 266 reflexion 
(b) 622 reflexion. In the harmonic approximation W(Q) is 
proportional to T. 

Thus 

o ( da(~ 23 
= \qmax 4rcq2dq (7"3) 

oo \ d O  ! 1 8~z 3 sin 20 

where co is the angular velocity of the crystal. The 
term (}L/2z03 cosec 20 in (7.3) is the familiar Jacobian 
relating the angular co-ordinates 0, £2 with the cartesian 
co-ordinates in reciprocal space. Combining (7.2) and 
(7.3): 

NQZlF(Q)12~,3qmax 
E|'O) ........ 2~zEm sin 208 

x (j=~l EJ(q)cos2~xj(q)Vff - _ (7 .4 )  
/ 

where the brackets ( ) indicate the average value over 
all the q vectors contributing to the TDS. The first- 
order scattering is sufficiently close to the Bragg posi- 
tion to justify using 0=08  in (7.4). The symbol 
Q(= 4z~ sin 0/2) is not to be confused with the quantity 
proportional to ~,3]F(Q)[2 cosec  20 which is frequently 
denoted by Q also. 

The integrated first-order TDS intensity included in 
the (normalized) background measurement, E~, is less 
than El. Assuming that the acoustic modes associated 
with E~ have wave vectors whose average magnitude 
is qmax, we can write [el equation (7.3)]: 

gbo) = [ do'(q) ~ f qmax 4z~qad q 2 3 
\ dr2 ] 1 oO 87[ 3 sin 208 

{ da(q)~ is evaluated, using equation (7.2), at w h e r e \  dO ]1 
q=  qmax. The result is that E~ works out as one-third 
of the first-order peak intensity: 

E~=½Ef . (7.5) 

The background is measured at a point where there 
is no Bragg (zero-order) intensity, i.e. E~ = 0. The inte- 
grated Bragg intensity included in the peak scan is 

(£)o ES= I I dtdf2 

or  

where XlX2X3 are cartesian coordinates in reciprocal 

space. Inserting the zero-order cross section, ~ 0' 

from equation (2.5) gives 

Ego)= -2-~ cosec 208vzN[F(Q)[ 2 . (7.6) 

A C 25A - 2* 
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Combining (7.4), (7.5) and (7.6) we have finally 

p b E 1 - E  1 
E~ 

I~rDS 8~ Q2qmnx 
- -  _ _  

IBragg 3 mvz 

Ej(o3 cos2~j(q) \ 
× X 

j v~-. - / ,  

where ITDs is the first-order TDS intensity included in 
the measured integrated intensity, Iobs, and IBragg is 
the zero-order intensity. Thus/robs exceeds IBragg by a 
factor 1 +~,  

/robs = IBragg(1 + ~), (7"7) 
where 

87~ Q2qmax ( z  -EJ(q) c°s2°~j(q) ~ (7"8) 
o~-- ~ -  mvz i V~ " 

This expression can be simplified at high tempera- 
tures (T> Debye temperature) by replacing the mode 
energy Ej(q) with kBT. If we assume further that the 
acoustic modes propagate isotropically, one with lon- 
gitudinal velocity Vz and two with transverse velocity 
Vt, equation (7.8) reduces to 

(1 8re QZqmax kBT.  ½ V~ + . (7"9) 
c~ - 3 mvz 

This shows that(for  a fixed value of qmax) a is propor- 
tional to Q2, so that if ~ is sufficiently small to justify 
the replacement of 1 + ~ by e% the effect of including 
TDS in the estimate of the Bragg intensity is to de- 
crease artificially the overall B-factor. This decrease, 
AB, is given by 

o r  

o~ = 2AB sin2OB/22 = (Q2/8rc2)AB [7-9(a)] 

64zc3 qmaxkBT ( l ~  + ~ t  ) . (7"10) 
A B -  9 mvz 

In the more exact treatment of the TDS correction 
discussed in sections 7.2 and 7-3 below, the effective 
value of qmax in (7"10) varies with the Bragg angle OB. 
Thus the inclusion of TDS in the measurement of the 
integrated intensity cannot be compensated for properly 
by decreasing the B-factor: even if no particular interest 
attaches to the B-factor, it is preferable to correct the 
individual intensity measurements before treating B as 
an adjustable parameter in the analysis of the diffrac- 
tion data. 

7.2. Nilsson treatment 
Nilsson (1957) has evaluated the correction term 

for the case of a cubic crystal in which the intensities 
are measured by means of an co-scan. In this scan, the 
detector is kept stationary at 0=  OB while the crystal 
rotates uniformly through the reflecting position. The 
volume swept out in reciprocal space during the scan 

is illustrated in Fig. 13(b), where ab corresponds to the 
angular width of the detector aperture in the horizontal 
plane, normal to the rotation axis, and bc corresponds 
to the crystal oscillation angle: the total volume is 
proportional to the area abcd multiplied by the vertical 
aperture of the detector. 

Nilsson's expression for ~, valid in the classical 
limit, is 

Q2 sin 20BkBT 
c~=a. 12~2 .. . .  K .  (7"11) 

K is related to the cubic elastic constants en, c12, C44 by 

INCIDENT 
B EAM 

C 

E I  q MAX 

o 

(o) 

INCIDENT 
BEAM 

c 

90-(9 c. 

d" p 

TECTOR 

o 
(b) 

o 

(c) 

Fig. 13. Volumes swept out in reciprocal space during the scan 
across the Bragg peak: (a) spherical approximation, (b) 
co-scan, (c) 0/2-0 scan. C is the centre of the Ewald sphere, 
O the origin of reciprocal space, and P the reciprocal lat- 
tice point. 
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K= ½(c11-c l z -  2c44) ( e l l  + c12) -~- c44(2Cll  "a t- c44)/ 

1-f~-5 ( e l  i - c12 - 2¢44)2(¢11 -Jr- 2c12 + C33) 

-1- ~(Cl l  - -  C12 - -  2C44) ( e l l  -a t- C12)C44 -1- ell c2  , (7.12) 

and if the elastic waves propagate isotropically, (7.12) 
reduces to 

2 1 
K=  + 

C44 Cll 

a in (7.11) is an integral of the first-order TDS intensity 
over the volume scanned in reciprocal space. Nilsson 
assumes that the detector aperture is of infinite height 
in the vertical plane, and a then reduces to an analytic 
expression [Nilsson's equation (8)] involving the oscil- 
lation angle and the horizontal width of the detector 
aperture. It is not difficult to show that Nilsson's ex- 
pression for a is equivalent to that given in equation 
(7.11) for the spherical approximation, apart from an 
angular-dependent factor which does not appear in the 
more approximate treatment. 

7.3. Cooper-Rouse treatment 

Nilsson's analysis has been developed further by 
Cooper & Rouse (Cooper & Rouse, 1968; Cooper, 
1969). Nilsson's formula for ~ includes the quantity 
K, dependent on the elastic constants of the crystal, 
and the quantity cr, which is related to the oscillation 
angle and the detector aperture but is independent of 
the properties of the crystal. Cooper & Rouse have 
improved the derivation of a in two ways: by avoiding 
the assumption of an infinite height of the detector 
aperture, and by extending the calculation to include 
the cases of both the co-scan and the co/20-, or 0/20-scan. 
In the 0/20-scan the detector moves at twice the angular 
velocity of the crystal, and the volume swept out in 
reciprocal space is as shown in Fig. 13(c), where ab 
represents the detector aperture, and bc the oscillation 
angle of the detector, cr is evaluated over the correct 
height of the aperture, using numerical methods for 
the integration of the first-order intensity over recip- 
rocal space. 

The Cooper-Rouse analysis constitutes the most 
reliable procedure available for correcting Bragg inten- 
sity measurements from a cubic crystal, made with 
either the co-scan or the 0/20-scan, for the contribution 
of first-order thermal diffuse scattering. The analysis 
includes a number of cumbersome expressions involv- 
ing the dimensions of the detector aperture, the oscil- 
lation range and the cubic elastic constants of the crys- 
tal, but provided these quantities are known, the TDS 
correction is obtained readily by a computer program. 

The Cooper-Rouse treatment assumes that the TDS 
correction is isotropic in reciprocal space, depending 
on the magnitude of Q but not on its direction. This 
is a good approximation for most cubic crystals, but 
is much less satisfactory for non-cubic crystals. The 
evaluation of the anisotropic TDS correction for both 
cubic and non-cubic crystals constitutes a straightfor- 

ward extension of the Cooper-Rouse analysis, and is 
described by Rouse, Willis & Cooper (1969). 

8. Theory (neutrons) 

The first-order scattering cross-section for slow neu- 
trons is quoted in equation (2.13). The formula applies 
to the scattering by the 3n normal modes with the same 
wave vector q; these modes must satisfy the conserva- 
tion rules for momentum and energy given in equation 
(2.12). The total first-order intensity is obtained by 
integrating (2.13) over all those acoustic modes which 
are seen by the detector during the scan across the 
Bragg reflexion and which lie along the scattering sur- 
faces defined by the conservation rules. In the X-ray 
case, there is only one scattering surface (the Ewald 
sphere); for one-phonon neutron scattering, the pho- 
non energy is comparable with the neutron energy so 
that the situation is more complicated, and there are 
distinct scattering surfaces for phonon emission and 
phonon absorption, as well as for the different branches 
of the dispersion curves. 

The neutron scattering surfaces change in both shape 
and position in reciprocal space as the crystal rotates. 
Seeger & Teller (1942) have shown that they can be 
represented approximately as ellipsoids or hyperbo- 
loids, depending on whether the incident neutrons are 
slower or faster than the velocity of sound in the crystal. 
These two cases must be examined separately. 

8"1. Faster-than-sound neutrons 
The scattering surface is a hyperboloid of two sheets, 

with the Ewald sphere lying between the sheets. The 
phonon-absorption process [ -  sign in equation (2.13)] 
corresponds to scattering involving q vectors terminat- 
ing on one sheet, and phonon emission [ + sign in (2.13)] 
to scattering involving q vectors terminating on the 
other sheet. It turns out (Cochran, 1963) that the sum 
of the two cross-sections, assuming that J~ = 1 in (2.13), 
is equivalent (as q - +  0) to the cross-section given by 
the X-ray formula (2.10). The problem of calculating 
the first-order TDS correction is the same, therefore, 
as for X-rays and the formulae given in § 7 can be used. 

8.2. Slower-than-sound neutrons 
The scattering surface is an ellipsoid with the nearest 

reciprocal lattice point at one focus. The scattering is 
accompanied by phonon absorption alone when the 
crystal setting is on one side of the Bragg position, 
and by phonon emission alone when the setting is on 
the other side of the Bragg position. As the crystal 
setting approaches the Bragg position from either side, 
the scattering surface contracts and finally collapses at 
the reciprocal lattice point. This is illustrated by Fig. 14 
which represents an example of slower-than-sound 
scattering surfaces, calculated by Lowde (1954), for 
different angular settings of an iron crystal. As the 
reciprocal lattice point is approached, fewer modes can 
contribute to the thermal diffuse scattering: however, 
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the contribution of each mode, proportional to q-2, 
increases. Thus, to a rough approximation, the total 
cross-section for first-order scattering of slower-than- 
sound neutrons is substantially invariant with 0 in the 
20 range near the Bragg reflexion, even though the scat- 
tering process changes over from phonon absorption 
to phonon emission at 0=  0B. No TDS peak will occur 
at the Bragg position and so c~ = 0. An exact calculation 
would require the mapping-out of the scattering sur- 
faces (for the particular crystal under study) at dif- 
ferent scattering angles 20, the integration of (2.13) 
over each surface to obtain the first-order diffuse inten- 
sity as a function of 0, and finally an estimate of the 
TDS correction, ct, from the form of the diffuse inten- 
sity versus 0 curve. 

We conclude from this section that the first-order 
TDS correction for the scattering of faster-than-sound 
neutrons can be estimated from the same formulae as 
for X-rays, and that, to a first approximation, there 
is no correction for the scattering of slower-than-sound 
neutrons. 

9.  T D S  c o r r e c t i o n  o f  m e a s u r e d  i n t e n s i t i e s  

In § 6 we discussed some X-ray measurements on KC1 
and some recent neutron measurements on BaF2. Both 
these sets of measurements were corrected for the effect 
of TDS, using the Cooper-Rouse treatment outlined 
in § 7.3, before being analysed in § 6 by the anhar- 
monic theory. In this section, we shall describe the 
magnitudes of these TDS corrections and their influ- 
ence on the isotropic B-factors of the constituent 
atoms. 

9.1. Potassium chloride 

James & Brindley's (1928) observations were made 
with an ionization chamber as detector, and to deter- 
mine the general background scattering the measure- 
ments were repeated with the ionization chamber ro- 
tated by 2 ° from the Bragg position and the crystal 
off-set by 1 °. The intensities were recorded by means 
of an co-scan. We shall assume that the oscillation angle 
of the crystal was + 1.25 ° and that the detector had 
a square aperture subtending an angle of 1.5 ° at the 
crystal (see Nilsson, 1957). 

The correction factor e, defined by equation (7.7), 
is listed in Table 6 for the six reflexions examined by 
James & Brindley at 20°C. The second column gives 
the values of e derived by the Cooper-Rouse treatment: 
the TDS contribution to the measured intensity of the 
400 reflexion is 3% of the zero-order (Bragg) intensity, 
whereas the proportion is as high as 24% for the 666 
reflexion. The Nilsson treatment (see third column of 
Table 7) over-estimates the TDS correction, which is 
the expected consequence of assuming an infinite slit 
height for the detector. The difference between the 
values for the finite and infinite slit heights is appre- 
ciable, and it is obviously desirable to use the correct 
slit height, as in the Cooper-Rouse treatment. The 

fourth column of the Table gives the 0o's calculated 
from the spherical approximation, equation (7.9a), 
assuming AB = 0.18 A 2. 

Table 6. TDS correction: KCI at 20 °C (X-rays, Mo K~) 

c~ ct (spherical 
hxh2h3 (Cooper-Rouse) (Nilsson) approximation) 

400 3.3% 3.7% 3.6% 
600 7.9 9.7 8-1 
444 10.9 12.9 10-8 
800 14.7 17-9 14-4 

10,0,0 22.7 28.2 22-6 
666 24.4 29.8 24.4 

This choice of the artificial decrease AB in the overall 
temperature factor was made to give closest agreement 
with the estimates of e derived by the Cooper-Rouse 
procedure. Thus a very good TDS correetion is pos- 
sible using the spherical approximation, provided AB 
is known or is treated as an adjustable parameter. 

9.2. Barium fluoride 
Bragg reflexions were examined by Cooper, Rouse & 

Willis (1968) with slow neutrons of 2=  1.037/~. This 
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PHONON /~  PEAK 
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I -24 

-12 

-6 

SCATTERING 110 RECIPROCAL 
SURFACE LATTICE POINT 

24, 
HYPERBOLIC 
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Fig. 14. Lower diagram: sections through the scattering sur- 
faces for the first-order scattering of slower-than-sound neu- 
trons by iron. The angles are marked in degrees relative to 
the Bragg setting (after Lowde, 1954). The upper diagram 
shows the scattered intensity versus O. 
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wavelength corresponds to a neutron velocity of 
3.7.105 cm.sec -1 : we must determine first whether this 
is faster or slower than the acoustic modes of vibration 
in BaF2. 

At 20 °C the elastic constants of BaF2 (Gerlich, 1964) 
are: 

cll = 8.92.1011 dyne.cm -2 
c12=4"00.1011 dyne.cm -2 
c44=2-54.1011 dyne.cm -2 • 

The condition for elastic isotropy (c11-c12=2c44) is 
nearly satisfied, and so the velocity of the longitudinal 
acoustic wave is 

IVzl = 1/cil/Q=4"3 • 105 cm.sec -1 

and the velocity of the two transverse acoustic waves is 

I%1 = l/b-~/0 =2"3 . 105 cm.sec -1 

where the density Q = 4.9 g.cm -3. Thus the neutrons are 
slower than sound for the longitudinal modes and 
faster than sound for the transverse modes. 

From the discussion in § 8, the TDS correction must 
be evaluated for the transverse modes only. Accord- 
ingly, the summation 

3 Ej(q) cos2~j(q) 
X 

in equation (8.2) is written (Ej(q)=kBT) as 

k n T  2 
. _ _ _ .  _ _  

2 v ~, 

whereas this would be expressed by 

for the corresponding X-ray case. 
The intensities were recorded by means of a 0/20- 

scan in which the crystal oscillated through + 1.2 o and 
the BF3 detector through twice this angle. The hori- 
zontal aperture of the detector was + 1.1 o and the 
vertical aperture + 1.6 °. Table 7 gives the or-values for 
a few reflexions examined at 20 °C, calculated both by 
the Cooper-Rouse treatment and by the spherical ap- 
proximation with AB = 0.05 A 2. 

Table 7. TDS correction: BaF2 at 20°C (1-04/~ neutrons) 

Gt 

~t (spherical 
hlh2h3 (Cooper-Rouse) approximation) 

511 1.7% 1.8% 
600 2.5 2.3 
711 3.7 3.3 
733 4.3 4.4 
933 6.9 6.4 
666 8.3 7.0 

Agreement between the two sets of ct is not as good 
as for Table 6 because the 0 range is much larger in 
Table 7. The isotropic B-factors of the anion and cation 
in BaF2 are appreciably different, but neglect of the 
TDS correction is roughly equivalent to an artificial 
reduction of each B-factor by 0.05 A 2 at 20°C. 

The results obtained in § 9 on KC1 and BaF2 can 
be summarized as follows: 

(1) The TDS correction to the measured intensities 
can be very large - as much as 24% at room tempera- 
ture for KC1 - although not as large as the correction 
predicted by Nilsson (1957). 

(2) The most satisfactory estimate of the TDS cor- 
rection for cubic crystals is obtained from the Cooper-  
Rouse procedure, in which the dimensions of the de- 
tector aperture are taken into account properly. A 
further refinement of this procedure would include 
allowances for resolution effects (mosaic spread of 
crystal and divergence of incident beam) and for higher- 
order (multi-phonon) scattering. In both the Cooper-  
Rouse and Nilsson treatments, it is assumed that the 
mean value of cosZctj(q) in equation (7.2) is one third; 
this is true only for a spherical region surrounding the 
reciprocal lattice point, and in a more exact analysis 
the correction term ~ [equation (7.11)] would depend 
on the direction of Q as well as its magnitude. (For 
non-cubic crystals, it is essential to treat ~ as anisotropic 
in reciprocal space: see Rouse, Willis & Cooper, 1969.) 

(3) Neglect of the TDS correction leads to an arti- 
ficial lowering of the overall temperature factor. In 
selected cases, agreement (to about 1%) is still possible 
between observed and calculated intensities, provided 
that the individual atomic temperature factors are 
treated as adjustable parameters. 

The author is indebted to Dr M.J. Cooper and Mr 
K. D. Rouse for much of the information used in this 
article. The treatment of the spherical TDS approxima- 
tion in § 7.1 emerged from correspondence with Dr 
A.W.Pryor .  
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Apparent Doubling of KikueM Lines Inside Strong Bands 

BY J. GJONNES AND R. HOmR 
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AND D. WATANAB~ 
Department of  Physics, Tohoku University, Sendai, Japan 

(Received 12 March 1968) 

Doubling of Kikuchi lines inside strong bands has been reported previously in electron diffraction 
patterns from MgO. The 'doubling' is now explained as being due to two different lines, which at the 
particular wavelength employed in the experiment are very close. Owing to strong enhancement from 
multiple beam interactions inside the band, one of the lines is visible only in this region. Further examples 
of such doubling are shown in patterns from MgO and natural spinel. The observed patterns are com- 
pared with theoretical calculations. 

In a recent paper on dynamic effects in diffuse scatter- 
ing from MgO, doubling of the deficient (820) Kikuchi 
line inside the (002) band was reported by two of us 
(Gjonnes & Watanabe, 1966). A pattern showing the 
doublet is reproduced in Fig. 1. The doubling was not 
theoretically explained; it was pointed out, however, 
that 4-beam calculations revealed an appreciable en- 
hancement of contrast inside the band for Kikuchi 
lines crossing the band at right angles. It is the purpose 
of this note to present an explanation of the reported 
'doubling' as being due to two different lines, one of 
which is visible only inside the band because of en- 
hancement from multiple beam interactions in this 
region. 

This explanation occurred to us during further ex- 
perimental and theoretical studies on Kikuchi lines 
from other crystals. Effects reminiscent of the doubling 
were occasionally observed, as in the pattern repro- 

duced in Fig.2, taken from a small chip of natural 
spinel, MgA1204. Inside the (400) band a double line 
is clearly seen. Detailed analysis of this pattern and 
comparison with a pattern taken at a different voltage 
revealed that this particular doublet was composed of 
the line (084) and the central part of the (2n+1,9,5) 
envelope. On changing the voltage from 100 kV to 
80 kV, the (084) line and the envelope were moved 
apart and there was no appearance of a doublet. 

In view of this, we re-examined the MgO pattern 
(Fig. 1) and found that at wavelengths close to 0.044 fl~ 
(corresponding to 72.5 kV) there would be near over- 
lap of the deficient lines (820) and (14,4,0). An inde- 
pendent determination of the wavelength using the 
Kikuchi lines (208), (208) and (820), (see Fig. 1) gave 
2 =0"04393 + 0"00007 A assuming the value a=4 .2119A 
(Brown, 1965) for the lattice constant of MgO. Assum- 
ing the weaker line in the doublet to be (14,4,0), we 


